3.626 \(\int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=379 \[ \frac {a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b^2 d}+\frac {\sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}+\frac {\sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b d}-\frac {(a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a b d} \]

[Out]

sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b/d/cos(d*x+c)^(1/2)-(a-b)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)
^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-
b))^(1/2)/a/b/d+cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))
*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+a*cot(d*x+c)*EllipticPi((a+b*co
s(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b)
)^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.74, antiderivative size = 414, normalized size of antiderivative = 1.09, number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {2820, 2809, 3003, 2993, 12, 2801, 2816, 2994} \[ \frac {a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b^2 d}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}+\frac {a \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {\sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b d}-\frac {(a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a b d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

-(((a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])
], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*b*d)) + (
Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b
)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(b*d) + (a*Sqrt[a + b]*
Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b
)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(b^2*d) + (a*Sin[c + d*
x])/(b*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) + (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + b*Cos[c
+ d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2801

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :
> Dist[1/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Dist[b/(a - b), Int[(1 +
 Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &
& NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2809

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(2*b*Tan
[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c - d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticP
i[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[(c + d)/b, 2])], -((c + d)/(c - d))])/(d
*f), x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2820

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> -Dist[(a*d
)/(2*b), Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/(2*b), Int[(Sqrt[d*Sin[e + f*x]]*(
a + 2*b*Sin[e + f*x]))/Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2993

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)])^(3/2)), x_Symbol] :> Simp[(2*(A*b - a*B)*Cos[e + f*x])/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[
d*Sin[e + f*x]]), x] + Dist[d/(a^2 - b^2), Int[(A*b - a*B + (a*A - b*B)*Sin[e + f*x])/(Sqrt[a + b*Sin[e + f*x]
]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rule 3003

Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*B*Cos[e + f*x]*Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n)/
(f*(2*n + 3)), x] + Dist[1/(2*n + 3), Int[((c + d*Sin[e + f*x])^(n - 1)*Simp[a*A*c*(2*n + 3) + B*(b*c + 2*a*d*
n) + (B*(a*c + b*d)*(2*n + 1) + A*(b*c + a*d)*(2*n + 3))*Sin[e + f*x] + (A*b*d*(2*n + 3) + B*(a*d + 2*b*c*n))*
Sin[e + f*x]^2, x])/Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0
] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx &=\frac {\int \frac {\sqrt {\cos (c+d x)} (a+2 b \cos (c+d x))}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 b}-\frac {a \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 b}\\ &=\frac {a \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)}}+\frac {\int \frac {2 a b+2 a^2 \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx}{4 b}\\ &=\frac {a \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d}+\frac {a \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)}}+\frac {\int \frac {-2 a^3+2 a b^2}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{4 b \left (a^2-b^2\right )}\\ &=\frac {a \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d}+\frac {a \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{2 b}\\ &=\frac {a \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d}+\frac {a \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)}}+\frac {a \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{2 b}-\frac {a \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{2 b}\\ &=-\frac {(a-b) \sqrt {a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b d}+\frac {\sqrt {a+b} \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b d}+\frac {a \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d}+\frac {a \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 4.46, size = 479, normalized size = 1.26 \[ \frac {\sqrt {\cos (c+d x)} \left (2 a \sqrt {\frac {a-b}{a+b}} \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \tan \left (\frac {1}{2} (c+d x)\right )-b \sqrt {\frac {a-b}{a+b}} \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \tan \left (\frac {1}{2} (c+d x)\right )+b \sqrt {\frac {a-b}{a+b}} \sin \left (\frac {3}{2} (c+d x)\right ) \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sec \left (\frac {1}{2} (c+d x)\right )-4 i a \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right )+2 i (a-b) \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right )+4 i a \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} \Pi \left (\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {a-b}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|-\frac {a+b}{a-b}\right )\right )}{2 b d \sqrt {\frac {a-b}{a+b}} \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sqrt {a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(3/2)/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(Sqrt[Cos[c + d*x]]*((2*I)*(a - b)*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[I*ArcSinh
[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))] - (4*I)*a*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1
+ Cos[c + d*x]))]*EllipticF[I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))] + (4*I)*a*S
qrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticPi[(a + b)/(a - b), I*ArcSinh[Sqrt[(a - b)/(a +
 b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))] + b*Sqrt[(a - b)/(a + b)]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Se
c[(c + d*x)/2]*Sin[(3*(c + d*x))/2] + 2*a*Sqrt[(a - b)/(a + b)]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Tan[(c +
 d*x)/2] - b*Sqrt[(a - b)/(a + b)]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Tan[(c + d*x)/2]))/(2*b*Sqrt[(a - b)/
(a + b)]*d*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 1.37, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(cos(d*x + c)^(3/2)/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(3/2)/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

maple [A]  time = 0.25, size = 622, normalized size = 1.64 \[ -\frac {\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) a +\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) b -2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticPi \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, -1, \sqrt {-\frac {a -b}{a +b}}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) a +\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right ) a \sin \left (d x +c \right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right ) b \sin \left (d x +c \right )-2 a \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticPi \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, -1, \sqrt {-\frac {a -b}{a +b}}\right ) \sin \left (d x +c \right )+\left (\cos ^{3}\left (d x +c \right )\right ) b +a \left (\cos ^{2}\left (d x +c \right )\right )-\left (\cos ^{2}\left (d x +c \right )\right ) b -a \cos \left (d x +c \right )}{d \sqrt {a +b \cos \left (d x +c \right )}\, \sin \left (d x +c \right ) \sqrt {\cos \left (d x +c \right )}\, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x)

[Out]

-1/d*((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c)
)/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*a+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))
/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*
b-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))
/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*a+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c
))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*sin(d*x+c)+(cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),
(-(a-b)/(a+b))^(1/2))*b*sin(d*x+c)-2*a*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b
))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*sin(d*x+c)+cos(d*x+c)^3*b+a*cos(d*x+c)
^2-cos(d*x+c)^2*b-a*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2)/sin(d*x+c)/cos(d*x+c)^(1/2)/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(3/2)/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\cos \left (c+d\,x\right )}^{3/2}}{\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(3/2)/(a + b*cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^(3/2)/(a + b*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos ^{\frac {3}{2}}{\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Integral(cos(c + d*x)**(3/2)/sqrt(a + b*cos(c + d*x)), x)

________________________________________________________________________________________